Math 564: Advance Analysis 1

Lecture 13

If
$$(f_n) \leq t^{t}$$
 is not monotone, then well things happen:
Excepts: (a) $(X, P) := (IR, \lambda)$. Let $f_n := \mathbf{1}_{\{n, n(1)\}} \rightarrow 0$ but $f_n d\lambda = [$
(a) $(X, P) := (IR, \lambda)$. Let $f_n := \mathbf{1}_{\{n, n(1)\}} \rightarrow 0$ but $f_n d\lambda = n \rightarrow \infty$
(b) Let $f_n := \mathbf{1}_{\{n, 2n\}} \rightarrow 0$ but $f_n d\lambda = n \rightarrow \infty$
(b) Let $f_n := (IO, 1), \lambda$. Let $f_n := \mathbf{1}_{\{0, \frac{1}{2}\}} \cdot n \rightarrow 0$ but $f_{\frac{1}{2}} \cdot n \rightarrow 0$.
(b) Let $f_n := \mathbf{1}_{\{0, \frac{1}{2}\}} \cdot n^2 \rightarrow 0$ but $f_n d\lambda = \frac{1}{n} \cdot n^2 \cdot n \rightarrow \infty$.
Fator's lemma. For any eq. $(f_n) \in t^*$, $\int t_{\frac{1}{2}} \cdot n d\lambda = \frac{1}{n} \cdot n^2 \cdot n^2$.
Foot. $t_{\frac{1}{2}} \cdot n^2 = 0$ but $f_n = t_n \int t_n df$.
Proof. $t_{\frac{1}{2}} \cdot n^2 = t_n (\inf_{n \neq N} f_n) - M$ (inf f_n increase so by the maximum $n \geq N$
 $M \in T$, we have $\int t_{\frac{1}{2}} \cdot (\inf_{n \neq N} f_n) dt = t_{\frac{1}{2}} \cdot n \int t_n dt$.
Mean $n \geq N$ (inf f_n) M (inf f_n) M is chosen $f_{\frac{1}{2}} \cdot N \rightarrow 0$.
Example: Fator $n \geq M \subset T$.
Let $f_n dt = f_n (f_n) - f_n dt = f_n \cap f_n dt = f_n \cap f_n dt$.
 $f_{\frac{1}{2}} \cdot f_n dt = f_n \cap f_n dt = f_n \cap f_n dt$.
 $f_{\frac{1}{2}} \cdot f_n dt = f_n \cap f_n dt$.
 $f_{\frac{1}{2}} \cdot f_n dt = f_n \cap f_n dt$.
 $f_{\frac{1}{2}} \cdot f_n dt = f_n \cap f_n dt$.
 $f_{\frac{1}{2}} \cdot f_n dt = f_n \cap f_n dt$.
 $f_{\frac{1}{2}} \cdot f_n dt = f_n \cap f_n dt$.

If
$$f: X \rightarrow C$$
, then call it \mathcal{F} -indegrable if Ret and Inf
are both \mathcal{F} -indegrable, and
 $\int f d\mathcal{F} := \int Ref d\mathcal{F} + i \int Inf d\mathcal{F}.$
Let $L'(X, \mathcal{F})$ denote the set of all \mathcal{F} -indegrable real
(or complex) valued functions. For $f \in L' := U'(X, \mathcal{F})$, denote:
 $\|ff\|_{4} := \int If | d\mathcal{F},$
and call it the L' -more of $f.$
Dis. $\|f\cdot\|_{4}$ is a periodo-more on $C':$
 $\|f\|_{4}$ is a periodo-more on $C':$
 $\|f\|_{4}$ is a periodo-more of $f.$
Dis. $\|f\cdot\|_{4}$ is a periodo-more on $C':$
 $\|f\|_{4}$ is a periodo-more of $f.$
Dis. $\|f\cdot\|_{4}$ is a periodo-more of $f.$
 $\|f\|_{4}$ if $\|f\|_{4}$ for all constants $c.$
 $\|f\|_{4}$ if $\|f\|_{4} \in [f]$ and $\|f\|_{4}$ for all constants $c.$
 $\|f\|_{4}$ if $\|f\|_{4} \in [f]$ if $\|f\|_{4}$ the $\|f\|_{4}$ is $\|f\|_{4}$ if $\|f\|_{4}$ is $\|f\|_{4}$ if $\|f\|_{4}$
 \mathbb{P} . $\int |f|f|_{4} f\|_{4} = \int |f|_{4} f\|_{4} f\|_{4$

a signered (su) of simple truck. set [su] > [f] at su -> f pluise bene then DCT applies of gives su -> i f. Det. let (X, M) be a measure space. We say let E & MEAS, generates MEAS, (mod Manil) it for every A & MEAS, I A & < < > ,t. A = "A. We say let MEAS, is albe generating MEAS, (mod s-mull). Exaples. Lebesque-measurable T-alg Bernoulli(p)-measurable T-alg. are ctdy generated. Prop. IF (X, M) is Ably generaded (i.e. MEASIN is Ably gen mod J-mill) then L'(X, M) is separable. Yroof. HW. We'll show later Mit L'(X,J) is also always complete. Chebyshev's inequality. For tel' d de (0, 00],

Xω Proof. (a) $\alpha \cdot \mu\left(\left\{x \in \chi : |f(x)| = \infty\right\}\right) \leq ||f||, < \infty, so \mu(\chi_{\alpha}) = 0.$ (b) Take $A_n := \{x \in \chi : |f(x)| \ge \frac{1}{n}\}$ then $A = \bigcup_n A_n$ of by Webscher, M(An) = 1/2 · 1/fll, < 00.